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QUESTIONS OF SIMILARITY AND THE SCATTERING 

OF WAVES IN VISCOPLASTIC MEDIA 

G. M. Lyakhov and K. S. Sultanov UDC 624.131.43 +539.21.084 

A study of plane waves  in v iscous  med ia  was made  in [1-7]. A solution of the p r o b l e m  of the p ropaga -  
t ion of a wave se t  up by uns t eady- s t a t e  shock loading in a v i scoe las t i c  med ium was obtained using an e lec -  
t ronic  compute r  in [6], and a solution in a v i scoplas t ic  med ium in [1, 7]. In the l a t t e r  case ,  different  equa-  
t ions a r e  introduced descr ib ing  the behav io r  of the med ium with loading and unloading, which leads to the 
fo rmat ion  of res idua l  deformat ions .  On the bas i s  of the solutions of [1, 7], a f in i te -d i f fe rence  r e p r e s e n t a -  
t ion was cons t ruc ted  for  the equations of mot ion in Lagrange  var iab les ,  and fo r  the sequence of differential  
equations de te rmin ing  the behav ior  of the medium.  The method of " s t r a igh t - th rough"  calculat ion with 
pseudov i scos i ty  was used.  The introduction of the pseudoviscos i ty  br ings  about the r ep l acemen t  of the 
shock fronts  by regions  of a continuous change in the p a r a m e t e r s ,  which leads  to additional difficult ies in 
de te rmina t ion  of the laws governing the washing-out  of a shock wave and the s ca t t e r i ng  of waves .  Below, 
the method of c h a r a c t e r i s t i c  cu rves  is  used to obtain a solution to the p rob lem of the propaga t ion  of a 
plane wave, se t  up by an uns t eady - s t a t e  shock load in a l inea r  v iscoplas t ic  medium,  cor responding  to the 
model  of [1]. It follows f r o m  the calcula t ions  that vo lumet r ic  v i scos i ty  leads to sca t t e r ing  of the waves  
and to nonobservance  of the condition of s imi l a r i t y .  An i nc r ea se  by an o rde r  of magni tude in durat ion of 
a wave changes the ra te  of propagat ion  of the m a x i m u m  of the s t r e s s e s ,  and the s t r e s s e s  themse lves ,  by 
only a few pe rcen t .  The values of the deformat ion  and the veloci ty  of the p a r t i c l e s  va ry  to a g r e a t e r  de- 
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gree  than the s t r e s s .  It has been shown that, in the medium, there  general ly  a r i ses  a double-wave con- 
figuration. In front, there  moves a forerunner ,  with a shock wave at the front. In the vicinity of the initial 
c ross  section, behind the shock wave there  follows a decrease ,  and then a continuous r i se  in the s t r e ss  to 
a second maximum, followed by a dec rease  in the s t r e s s .  At a sufficient distance behind the shock wave, 
there  is a continuous r i se  in the s t r e ss  to a maximum, and then a decrease  in it. At still g rea te r  distances,  
the amplitude of the shock wave is prac t ica l ly  equal to zero, and the s t r e s s  r i ses  and falls continuously. 
The model of [1] is designed for a descr ipt ion of soils and rocks,  as well as some other  solid media. 

1. S t a t e m e n t  o f  P r o b l e m ,  M e t h o d  o f  S o l u t i o n  

We use a model of a viscoplast ic  medium [1], in accordance with which, in a medium, there exist 
dynamic a =  EDe ~ (with ~--- ~) and static a =  ESe (with { - - 0 )  diagrams of the compress ion .  Unloading takes 
place in accordance  with different equations than loading, which leads to the formation of residual  deforma-  
tions and ref lects  the plast ic  proper t ies  of the medium. 

The deformation of an element of the medium has the form 

where el is connected with the instantaneous (dynamic) compress ion  of the mater ia l ,  and g2 with the r e -  
packing of the grains ,  taking place in the course  of a finite period of t ime. With a decrease  in the load, 
e 1 var ies  according to the law 

ff - -  ffm=E~(81 - -  8m), 8m=ffm/ED, ER>E D. 

The deformation s2 is assumed to be i r r evers ib le .  Under these assumptions,  the behavior  of the medium 
is determined by the following equations: 

a) with shock loading, 
8:el=~/ED; (1) 

b) with a continuous r i se  in the s t ress ,  

~ t = E D E s / ( E D  - -  ES)~I; (2) 

c) with a dec rease  in the s t ress ,  but a r i se  in s 2, 

-l- l~e = (Y I:ER --1- ~ta (Es  -~ - -  E-~' - -  E'~ ' )  + [za,n (E'K ~ - -  E -~ ) ;  (3) 

d) with a dec rease  in the s t r e s s  and e 2 = const, 

ER~=a, (4) 

where E D is the dynamic compress ion  modulus; E S is the static compress ion  modulus; ER is the modulus 
of the unloading; ~ is the coefficient of the viscosi ty;  # is the pa r ame te r  of the viscosi ty.  

We use Lagrangian variables  (h is the mass ,  t is the time). The load in the initial c ross  section h = 0, 
setting up a wave (the f i r s t  boundary condition) is represented by the expressions 

a = ~ ( l  - -  t/O), 0 < t < O, a=0,  t > O. (5) 

We assume T=ED/ES, f l=ED/ER; the acoustic (wave) res is tance  (impedance) of the medium A =4--EDPo = 
c0P0, where P0 is the initial density of the medium; c o is the speed of the sound of the longitudinal wave. 
We wri te  the equation of the line of the front in the plane h, t: 

h = A t .  

Then the second boundary condition (at the front of the wave, where viscous proper t ies  do not appear) 
can be represen ted  by the expression 

a =  -- Au where h = A t .  (6) 

We go over to the dimensionless variables  

~=ttt; z = ! t h / A ;  o~ zz~ s~ um=- - f f , nA;  

~ra=um/E D. 
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variant t 2 5 

:5 2,5 Valuep.O Of 150000 I 500 

3 

50 10 ] 

The bas ic  equations of motion in these  va r i ab l e s  have the f o r m  

au~ -4- 0~~ c~u~ as~ a z - - ~ = O ;  ~ - W ~ = O  

and Eqs. (1)-(4) a ~ =~0; ~-0 +~0 =(r0 +Tffo; 

~,o + ~o __ ~oo + ~o (v + ~ - t )  0 

where  (r~ x is the max imal  d imens ion less  s t r e s s  in a pa r t i c l e  of the medium.  
tion (5) (x =0) is wr i t ten  as o'~ 0-<~ " -< X; ~~ ~-~-g0, and(6) (x=;'),  

Then the boundary condi- 

G 0 ~  0. 

The s y s t e m  of equations is hyperbol ic .  The cha rac t e r i s t i c  re la t ionships  in the plane x, r have the 
f o r m  

da ~ -~- du~ ~ -- 7r176 with d x / d x = !  t; 

dc r~ --  ds~ ~ - -  7o~ with dz/dx=O 

in the region where  a > O, ~2 > O, which co r r e sponds  to the condition dcr~ > O, dd~ < de~ 

dur 1 

with dx/d7 = :e# -1/2, 

1 t 
do0 _ ~ d~0 = T [~~ - (V + ~ - -  1) o0 _ (~ _ ~) ~o] d~ 

with dx/dT =0 in the region where  ~ < 0, ~2 > 0, which co r r e sponds  to the condition da~ < O, d~~ < ~de~ 

]/'~d~ ~ "4- du~ with dx/d'~= ~ "l/~'~; 
~do ~ --  deo=o with dx/d~=O 

in the region where  ~< O, ~2 = O, which co r re sponds  to the condition dz~ < O, da~176 

2.  R e s u l t s  o f  t h e  S o l u t i o n  a n d  T h e i r  A n a l y s i s  

Six va r i an t s  we re  calculated in an Odra digital computer~ In all c a s e s  it was a s sumed  that  ",/=2, 
fl =0.5. The values  of #0 a r e  given in Table  1. 

The r e su l t s  of a calculat ion of the p a r a m e t e r s  of a wave at fixed points of the med ium for  #e=5  a re  
given in Fig. 1 (a is the s t r e s s ,  b is the deformat ion ,  and c is ttle veloci ty  of the pa r t i c l e s ) .  The dis tances  
cons idered  a r e  suff icient ly fa r  f r o m  the or igin  of coord ina tes .  Curves  0-4 i l lus t ra te  d is tances  x f rom the 
initial c r o s s  sect ion equal to 0, 5, 10, 20, and 40, r espec t ive ly .  At all  d is tances ,  a fo re runne r  moves  in 
front,  at whose front  all the p a r a m e t e r s  va ry  discontinuously.  The value of the discontinuity does not de-  
pend on the value of #0. It falls  rapidly with inc reas ing  dis tance.  The smal l  c i r c l e s  denote p a r a m e t e r s  
at the fo re runner ,  at tained by the discontinuity,  With x = 5, the value of the discontinuity is equal to 0.079, 
and, with x=  10, to only 0:0063. In a v i scoe las t i c  medium,  wh, e re  loading and unloading of the med ium take 
p lace  in accordance  with exact ly  the s a m e  equation, with T = 2 and fl= 1 the values  of the discontinuity at 
these  s a m e  dis tances  a r e  equal, r e spec t ive ly ,  to 0.082 and 0.007 [6]. Behind the shock wave,  t he r e  is a 
continuous r i s e  in the p a r a m e t e r s  up to a max imum,  followed by a d e c r e a s e .  With inc reas ing  dis tance 
f r o m  the initial c r o s s  section,  the values  of all the p a r a m e t e r s  d e c r e a s e .  

Calculat ions show that, with an i n c r e a s e  in #0, the ra te  of damping of the wave d e c r e a s e s  with in- 
c r ea s ing  dis tance,  while the t ime  requi red  to at ta in a m a x i m u m  r i s e s .  With #~ =50,000, the wave is c lose 
to s ta t ionary;  at the d is tances  under  considera t ion ,  the values  of the p a r a m e t e r s  p rac t i ca l ly  do not vary,  
and the t ime  requi red  to at tain a m a x i m u m  is the g r e a t e s t .  With pO= 0.5, the wave lags behind the shock 
wave and t he r e  is no washing-out  [6]. 
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In the in i t ia l  c r o s s  sec t ion  and n e a r  it, t he re  is  f i r s t  a t ta ined a max imum of the s t r e s s ,  and then of 
the deformat ion  and the veloci ty  of the p a r t i c l e s .  With i nc rea s ing  d i s tance  f rom the ini t ia l  c r o s s  sect ion,  
the moments  of the a t ta inment  of a max imum of al l  the p a r a m e t e r s  approach  each o ther  and, at a suff i-  
c i e n t l y ' g r e a t  d i s tance ,  a r e  p r a c t i c a l l y  ident ica l .  With the p a s s a g e  of t ime ,  the deformat ion  tends toward 
a constant  ( res idual)  value,  which depends on the d i s tance  and the value of #0. 

F igu re  2 gives  curves  of the dependence  of the m a x i m a l  s t r e s s  on the d is tance ,  with di f ferent  values 
of p0. Here  and in what follows, the number ing  of the curves  c o r r e s p o n d s  to the number  of the var ian t s  
given in Table  1. Curves 3* and 3"*  we re  p lot ted  f rom the data of [7], obtained with #0=5, fl=0.5, and 
lJ equal,  r e spec t ive ly ,  to 4 and 1.1. With a r i s e  in T, t h e r e  is  an i n c r e a s e  in the d i f ference  between the 
d i a g r a m s  of the dynamic  and s ta t ic  c o m p r e s s i o n .  This l eads  to a r i s e  in the l o s s e s  of energy in the wave, 
and to i ts  m o r e  rap id  damping with i nc r ea s i ng  d i s tance .  Curve 3**, t he re fo re ,  l i e s  above, and 3* below, 
curve 3. 

The ca lcu la t ions  show that,  with i nc rea s ing  d is tance ,  the ra te  of damping of the maximal  value of 
6 0 the deformat ion  ( max ), l ike  the s t r e s s ,  depends e s sen t i a l l y  on pO. 

With #0= 50,000, the max ima l  de format ion  is p r a c t i c a l l y  equal to the l imi t ing  value at ta ined on the 
d i ag ram of the s ta t ic  compres s ion ,  and the r e s idua l  de format ion  co r r e sponds  to unloading, f rom the s ta t ic  
d i a g r a m  of the c o m p r e s s i o n :  G ~ ~1.99, GOes ~1.50. With a d e c r e a s e  in p0, the max imal  and res idua l  de-  
fo rmat ions  d e c r e a s e .  With pO = 5, at a suff ic ient ly  g rea t  d is tance ,  they approx ima te ly  a r e  two o r d e r s  of 
magnitude l e s s  than with #0 = 50,000. 

Let  us c o n s i d e r  in m o r e  deta i l  the change in the s t r e s s  at fixed points  of the medium n e a r  the ini t ia l  
c r o s s  sect ion.  In the reg ion  between the front  of the wave (the forerunner )  and the ini t ia l  c r o s s  sect ion,  
the solut ion is  de t e rmined  by continuously d i f fe ren t iab le  functions.  With x = 0, in some neighborhood of 
the ini t ia l  c r o s s  sect ion,  behind the shock wave dcr~ < 0. F igure  3 shows values  of r in the ne ighbor-  
hood of the in i t ia l  c r o s s  sec t ion  with/~0= 50 (variant  3). Curves 0-4 co r re spond  to d i s tances  x equal to 
0, 0.007, 0.01, 0.015, and 0.02, r e spec t i ve ly .  It can be seen f rom the curves  that, in the case  of a wave, 
set  up by an u n s t e a d y - s t a t e  shock loading,  t h e r e  a r e  two max ima  n e a r  the ini t ia l  c r o s s  sect ion.  With p r o p -  
agat ion of the wave, the f i r s t  max imum is rap id ly  smoothed out, i .e . ,  the region where  da~ - < 0 vanishes .  
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But,  even  wi th  x = 0.18, beh ind  the  shock  wave  at  t he  f ron t  of t he  f o r e r u n n e r  t h e r e  is  a f u r t h e r  con t inuous  
r i s e  in the  s t r e s s .  Dur ing  t h i s  t i m e ,  in t he  i n i t i a l  c r o s s  s e c t i o n  the  s t r e s s  d e c r e a s e s  only  to 0.9997.  The  
c u r v e s  of o~ff) (see  F ig .  l a )  r e l a t e  to  r e l a t i v e l y  g r e a t  d i s t a n c e s ,  w h e r e  t h e r e  is  no l o n g e r  a f i r s t  m a x i m u m  
fo r  the  w a v e .  

I t  fo l lows  f r o m  the  c a l c u l a t i o n s  tha t  the  r a t e  of p r o p a g a t i o n  of the  m a x i m u m  of the  s t r e s s  D m in a 
c e r t a i n  s e c t i o n  r i s e s  wi th  an  i n c r e a s e  in the  d i s t a n c e .  Unde r  t h e s e  c i r c u m s t a n c e s ,  i t  t ends  t o w a r d  a l i m i t ,  
depend ing  on the  v a l u e  of #0. With  s m a l l  v a l u e s  of #0, the  l i m i t i n g  v e l o c i t y  D m ~ 1, i . e . ,  i t  c o r r e s p o n d s  to  
the  v e l o c i t y  of the  f o r e r u n n e r ,  d e t e r m i n e d  by  the  d i a g r a m  of t he  d y n a m i c  c o m p r e s s i o n .  Wi th  an i n c r e a s e  
in  #0. the  l i m i t i n g  v a l u e  D m d e c r e a s e s .  Wi th  pO=5, 50, 500, 50,000, D m is  equal ,  r e s p e c t i v e l y ,  to 0.9, 0.7, 
0.6, 0.5. 

The r a t e  of p r o p a g a t i o n  of the  m a x i m u m  of t he  s t r e s s  wi th  s m a l l  v a l u e s  of x i s  g r e a t e r  than  the  v e -  
l o c i t y  of the  m a x i m u m  of  t he  d e f o r m a t i o n  and the  m a x i m u m  of the  v e l o c i t y  of the  p a r t i c l e s .  With  a r i s e  
in p0, the  v a l u e s  of t h e s e  v e l o c i t i e s  a p p r o a c h  e a c h  o t h e r .  Wi th  #0=50 and x > 10, the  v e l o c i t i e s  p r a c t i c a l l y  
c o i n c i d e .  

3 .  S c a t t e r i n g  o f  W a v e s  i n  V i s c o u s  M e d i a  a n d  D e v i a t i o n  

o f  t h e  P a r a m e t e r s  f r o m  t h e  S i m i l a r i t y  C o n d i t i o n  

The c a l c u l a t e d  r e s u l t s  g i v e n  a b o v e  show tha t  v i s c o u s  p r o p e r t i e s  l e a d  to  s c a t t e r i n g :  wi th  an i n c r e a s e  
in t he  d u r a t i o n  of the  wave ,  the  r a t e  of p r o p a g a t i o n  of the  m a x i m u m  of the  p e r t u r b a t i o n  dec l ines~  Wi th  # = 
1000 s e c  -1, t h i s  c o r r e s p o n d s  to s o i l s  of a v e r a g e  dens i ty ;  wi th  a r i s e  in t he  d u r a t i o n  of the  l oa d ing  0, s e t t i ng  
up the wave ,  f r o m  0.005 to 0.05 s ec ,  t he  v e l o c i t y  of the  m a x i m u m  d e c r e a s e s  by  a p p r o x i m a t e l y  1.3 t i m e s ,  
and,  wi th  a change  in 0 f r o m  0.05 to  0.5 s e c ,  by  1.1 t i m e s .  

The  n a t u r a l  s c a t t e r  in the  p r o p e r t i e s  of e x a c t l y  the  s a m e  so i l  l e a d s ,  a s  e x p e r i m e n t s  show I1], to  a 
change  in the  v e l o c i t y  D m by 1 .3-1 .5  t i m e s .  T h e r e f o r e ,  to o b s e r v e  s c a t t e r ,  the  t i m e  of a c t i o n  of the  wave  
m u s t  be  v a r i e d  by  one and o n e - h a l f  to  two o r d e r s  of m a g n i t u d e .  Wi th  s m a l l e r  i n t e r v a l s  of the  v a l u e s  of 0 
t t  i s  p r a c t i c a l l y  i m p o s s i b l e  to  d i s c l o s e  the  s c a t t e r ,  a s  is  shown by the  r e s u l t s  of e x p e r i m e n t s .  Le t  us  c o m -  
p a r e  the  p a r a m e t e r s  of the  w a v e s  in l i n e a r  p l a s t i c  and v i s c o p l a s t i c  m e d i a .  We u s e  a m o d e l  of a p l a s t i c  
m e d i u m  in which  the  l oad ing  is  l i n e a r  c r=EDe and un load ing  t a k e s  p l a c e  a long  the  s t r a i g h t  l i n e s  a - ~ m =  
ER(~-em) (~  m is  t h e  m a x i m a l  s t r e s s ;  ~m is  the  m a x i m a l  d e f o r m a t i o n  in a p a r t i c l e ) .  Th i s  m o d e l  i s  a l i m i t -  
ing c a s e  of t he  m o d e l  u sed  fo r  a v i s c o p l a s t i c  m e d i u m  with  E S - -  E D o r  # - -  0. F o r  such  a m e d i u m ,  an a n a -  
l y t i c a l  s o l u t i o n  has  been  ob ta ined  [1] to  t he  p r o b l e m  of t he  p r o p a g a t i o n  of a wave  se t  up by shock  load ing ,  
v a r y i n g  in t he  i n i t i a l  c r o s s  s e c t i o n  a c c o r d i n g  to  Eqs.  (5). The m a x i m a l  d i m e n s i o n l e s s  v a l u e s  of the  s t r e s s ,  
the  d e f o r m a t i o n ,  and the  v e l o c i t y  of the  p a r t i c l e s  in t he  v a r i a b l e s  h, t a r e  de f ined  by the  e x p r e s s i o n s  

0 0 0 A R - -  A D  h 
ffn,.ax ~ Emax = Umax = ~ 2A~ " ADO'; 

0 (~max 0 8max . 0 Umax. 

A:~ ] / E : ~ ) 0 ;  h A .  = _ _  .~ _ ; AD = |/Ez)po. 
ADO ~ A R - -  A D 

The m a x i m a l  v a l u e s  of a l l  t h r e e  q u a n t i t i e s  c o i n c i d e  and v a r y  in a c c o r d a n c e  with  a l i n e a r  law wi th  
the  d i m e n s i o n l e s s  d i s t a n c e  h/ADO. 

F i g u r e  4 g i v e s  c u r v e s  of t he  d e p e n d e n c e  of the  m a x i m a l  s t r e s s  in a wave  on the  d i m e n s i o n l e s s  d i s -  
t a n c e  h/ADO=X/#O with  d i f f e r e n t  v a l u e s  of pO in a v i s c o p l a s t i c  ( cu rves  2-6  c o r r e s p o n d  to v a r i a n t s  2 -6  of 
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Table  1) and in a p l a s t i c  medium (curve 0). The s t r e s s  in a v iscous  medium va r i e s  in accordance  with a 
nonl inear  law; at al l  d i s t ances  it is l e s s  than in a p l a s t i c  medium.  With di f ferent  values  of the p a r a m e t e r  
#0, the max ima l  values  of the s t r e s s  a r e  c lose .  

The ca lcu la t ions  show that  the max ima l  values  of the deformat ion  and the ve loc i ty  of the p a r t i c l e s  in 
a v iscous  medium,  with i nc rea s ing  d i s tance  f rom the ini t ia l  c r o s s  sect ion,  va ry  accord ing  to a nonl inear  
law and, at c lose  d i s t ances ,  exceed the values  of t he se  quant i t ies  in a p l a s t i c  medium.  With an i n c r e a s e  
in the dis tance,  e~ x and U ~  in a v iscous  medium d e c r e a s e  m o r e  rap id ly  and, at a suff ic ient ly  g rea t  
dis tance,  become  s m a l l e r  than in a p l a s t i c  medium.  In d is t inc t ion  f rom the s t r e s s ,  they va ry  apprec iab ly  
with a change in ~0. An i n c r e a s e  in p0 by one or  two o r d e r s  of magnitude,  at co r respond ing  d is tances ,  

l eads  to a change in ~max~ and Umax0 by tenths  of a p recen t ,  and to smal l  changes in a ~ 

The de fo rmat ion  of a medium with the p a s s a g e  of a wave takes  p lace  with a va r i ab l e  deformat ion  r a t e  
~0. The d i s tances  where  t he re  a r e  no shock waves,  ~0 at f i r s t  r i s e s ,  a t ta ins  a maximum,  and then dec l ines .  
There fo re ,  the sec t ions  of the d i a g r a m  of a(e) co r re spond ing  to a r i s e  in the s t r e s s  a r e  found to be concave 
toward  the axis  of the de fo rmat ions ,  even when the d i a g r a m s  a=f(e) ,  co r respond ing  to ~--oo and ~ - -0 ,  a r e  
l i n e a r  or  convex toward  the axis  of the deformat ions .  Af te r  the load has been removed ,  r e s idua l  de fo rma-  
t ions r e m a i n  in the medium,  whose value depends on the magni tude and the durat ion of the load se t t ing up 

the wave. 

4 .  O v e r a l l  C h a r a c t e r  o f  W a v e s  i n  V i s c o p l a s t i c  

a n d  E l a s t o p l a s t i c  M e d i a  

In  v i s cop l a s t i c  media ,  where  the d i a g r a m s  of the dynamic ( ~ - - ~ )  and s ta t ic  (~ ~ 0) c o m p r e s s i o n  a r e  
l i n e a r  or  convex with r e s p e c t  to the axis  of the deformat ions ,  the c h a r a c t e r  (profile) of the wave depends 
e s s e n t i a l l y  on the d i s tance  f rom the in i t ia l  c r o s s  sec t ion  and on the value of the p a r a m e t e r  p0. Under the 
act ion of u n s t e a d y - s t a t e  shock loading,  in the gene ra l  case  shock f ronts  ex is t  only in the  neighborhood of 
the in i t ia l  c r o s s  sec t ion .  Under these  c i r c u m s t a n c e s ,  t he re  a r i s e s  a double-wave configurat ion.  A f o r e -  
runner  moves  ahead,  with a shock wave at the  front,  i .e . ,  the f i r s t  max imum.  Behind the shock wave the re  
is  f i r s t  a drop,  and then a continuous r i s e  in the s t r e s s  up to a second maximum.  Af te r  this ,  with i n c r e a s -  
ing d is tance ,  t h e r e  is a fu r the r  g radua l  d e c r e a s e  in the magnitude of the shock wave at the f o r e r unn e r  down 
to ze ro .  Under these  c i r c u m s t a n c e s ,  the m a x i m a l  s t r e s s  in the wave d e c r e a s e s ,  but s t i l l  r ema ins  l a rge .  
The t ime  r e q u i r e d  for  the s t r e s s  to r i s e  to a max imum i n c r e a s e s .  There  a r i s e s  a continuous c o m p r e s s i o n  
wave which exhausts  i t s e l f  g r adua l ly  with p ropaga t ion .  

In e l a s t op l a s t i c  media ,  where  the d i a g r a m  of the c o m p r e s s i o n  with smal l  s t r e s s e s  is a ssumed  to be 
concave,  and with l a r g e  s t r e s s e s ,  convex, with r e s p e c t  to the axis  of the deformat ions ,  with the act ion of 
u n s t e a d y - s t a t e  shock loading,  t he re  a l so  a r i s e s  a double-wave configurat ion [1, 8]. A fo re runne r  moves 
ahead (an e l a s t i c  wave), with a shock wave at the front .  Af ter  th is ,  t he re  follows a region of constant  flow 
(a pla teau) ,  along which the second shock wave, ca l led  a p l a s t i c  wave, is p ropaga ted .  The ampl i tude  of the 
p l a s t i c  wave d e c r e a s e s  with i nc r ea s ing  d is tance;  under  these  c i r c u m s t a n c e s ,  the dura t ion  of the region  of 
constant  flow r i s e s .  The ampl i tude  of the f o r e r unne r  r e m a i ns  unchanged up to the exhaust ion of the p l a s t i c  

wave. 

The e x p e r i m e n t s  show that  the p i c tu r e  of the p ropaga t ion  of waves in so i l s  and rocks  and in some 
other  dense  med ia  is d e s c r i b e d  mos t  exac t ly  by a model  of a v i scop las t i c ,  and not an e l a s top la s t i c ,  medium.  
In actual i ty ,  the shock wave at  the front  of the fo re runne r  fa l l s  r ap id ly  to zero ,  where  the max imal  s t r e s s  
in the wave is s t i l l  g r ea t .  There  is  no p la teau  behind the front  of the fo r e runne r .  The second max imum is 
washed out. The damping of waves i n  a v iscous  medium takes  p lace  m o r e  r ap id ly  than in a p l a s t i c  medium, 

which is c l o s e r  to the expe r imen ta l  va lues .  

The d i a g r a m s  of c o m p r e s s i o n  with a v a r i a b l e  sign of the curva tu re ,  taken as a b a s i s  in the model  of 
an e l a s t o p l a s t i c  medium,  as is shown by an ana lys i s  of expe r imen t s  on the dynamic c o m p r e s s i o n  of s a m -  
p les ,  were  obtained with a l a rge ,  but f inite,  de format ion  ra te ,  i .e . ,  they do not r e l a t e  to the l imi t ing  case  

~ r  In addition, during the p r o c e s s  of compres s ion ,  the deformat ion  r a t e  e was obviously not always 
held constant .  If, with compre s s ion ,  in some  in te rva l  of t ime  ~ d e c r e a s e s ,  the resu l t ing  curve of a(e) is  
found to be concave,  and, with a r i s e  in ~, convex toward the axis  of the deformat ions ,  even if the dynamic 
d i a g r a m  of the c o m p r e s s i o n  with ~ ~ is l i ne a r .  

Thus, the washing out of the waves with inc reas ing  d is tance  [1, 6, 7] is connected with the v iscous  
p r o p e r t i e s  of the sol id  m e d i a ,  and not with a di f ferent  sign of the cu rva tu re  of the d i a g r a m  of the dynamic 
c o m p r e s s i o n  with di f ferent  values  of the s t r e s s .  
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It is noted in [9] that the d iagrams of the dynamic compress ion  of soils and rocks are  convex with 
respect  to the axis of the deformations,  and that shock waves exist only in the region of high s t r e s ses .  
Such a cha rac t e r  of the change in the waves with increas ing distance is explained by the dilatant proper t ies  
of soils  and rocks in a pulverized state  (dilatance is the change in the volume of a granulated medium with 
shear) .  

Conditions of s imi lar i ty  with the propagation of waves are  observed in a model of an elastoplast ic  
medium and are  not observed in a model of a viscoplast ic  medium. A large number  of experiments  show 
that the condition of s imi lar i ty  is satisfied in a f i rs t  approximation in soils and rocks .  The conclusions 
with respect  to the sat isfact ion of the condition of s imilar i ty  are  based on a compar i son  of the valucs of 
the maximal  s t r e s s  in the wave with different values of its duration at identical dimensionless  dis tances.  
The calculations ca r r i ed  out above show that in exactly the same viscous medium with different values of 
the duration of the loading, setting up the wave, at identical dimensionless distances h/ADO, the maximal 
s t r e s se s  differ only slightly. Therefore,  observance of the condition of s imi la r i ty  with respect  to the s t r e ss  
is not a very  weighty argument  in support of the use of a model of an elastoplast ic  medium. But the solu- 
tion of wave problems taking account of viscous and plastic proper t ies  is complicated.  Therefore ,  it is 
advisable, as before,  to use the s imple r  model of an elastoplast ic  medium, which permi t s  obtaining an 
approximate pic ture  of the damping of the waves.  
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